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Abstract. We develop eight different mixed-integer convex programming reformulations of 0 − 1
hyperbolic programs. We obtain analytical results on the relative tightness of these formulations
and propose a branch and bound algorithm for 0 − 1 hyperbolic programs. The main feature of the
algorithm is that it reformulates the problem at every node of the search tree. We demonstrate that
this algorithm has a superior convergence behavior than directly solving the relaxation derived at the
root node. The algorithm is used to solve a discrete p-choice facility location problem for locating
ten restaurants in the city of Edmonton.
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1. Introduction

The 0 − 1 hyperbolic program consists of optimizing the sum of ratios of linear
functions of binary variables subject to linear constraints. The problem can be
stated as follows:

(H)

max
m∑
i=1

ai0 + aTi x

bi0 + bTi x

s.t. Dx � c

x ∈ {0, 1}n

where D ∈ R
k×n, c ∈ R

k, ai ∈ R
n, bi ∈ R

n, ai0 ∈ R and bi0 ∈ R. It is assumed
that (bi0 + bTi x) > 0 for any i and any feasible x.

Applications of 0 − 1 hyperbolic programs of the above form can be found in
many diverse areas including airline crew scheduling [3], cutting stock problems
[13], optimization of queries in information retrieval [19], scheduling of common
carriers [37], and computer-aided molecular design [36].

An unconstrained single ratio version of (H) was addressed by Hammer and
Rodeanu [18] who showed that any local minimum is also a global minimum and
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developed a simple algorithm for its solution. This algorithm was improved by
Robillard [32]. More recently a O(n) algorithm for this problem was proposed by
Hansen et al. [19].

Numerous researchers have addressed the constrained single ratio 0 − 1 hy-
perbolic program. This problem is clearly NP-hard since pure 0 − 1 integer pro-
gramming is a special case with bi = 0 and bi0 = 1 for i = 1, . . . , m. Solution
strategies for these problems include linearization [45], branch and bound [1, 32],
cutting plane algorithms [15, 16], enumerative methods [3, 14] and approxima-
tion algorithms [22]. For certain problems with specially structured constraint set,
strongly polynomial algorithms have been developed by Megiddo [27]. A survey of
these and other methods for the constrained single ratio 0− 1 hyperbolic program
appear in the book by Stancu-Minasian [41].

In contrast to the single ratio problem, the constrained multiple ratio 0 − 1
hyperbolic program (H) has received relatively little attention. One such problem
consisting of a single cardinality constraint was addressed by Saipe [37]. The au-
thor developed a branch and bound method along with several heuristic strategies
for this problem. Li [24] and Wu [46] suggested solving the constrained multiple
ratio 0 − 1 hyperbolic program by reformulation into mixed-integer linear pro-
grams and applying standard branch and bound techniques. Optimization of sums
of fractional terms over linear polytopes have been addressed in [9, 31]. Solution
approaches for these problems have been reviewed by [38, 39].

In [43], we defined a convex/concave extension of a lower/upper semi-continuous
function φ as a convex/concave function that agrees with φ at a pre-specified set of
points. In this paper, we construct the convex and concave extensions of fractional
functions of 0−1 variables. As a result, we propose a number of mixed-integer
convex programming reformulations of (H). The reformulation schemes are used
to develop a branch and bound algorithm for this problem which is then applied to
solve a discrete p-choice facility location problem.

The remainder of the paper is organized as follows. In Section 2, we discuss the
problem of extending a linear fractional function of binary variables over the unit
hypercube. We show that the convex envelope of an associated bilinear function
yields a convex extension of the fractional function when the variables are restric-
ted to be binary. These extensions are used to derive a number of reformulation
schemes for (H) in Section 3. The proposed reformulations have superior relaxation
bounds compared to those in the existing literature [24, 46]. The importance of the
bounds on the fractional terms in the reformulations is discussed in Section 5. In
Section 6, we develop a branch and bound algorithm for (H). Standard branch and
bound solvers may be used to solve the problem once it is reformulated into a
mixed-integer program. However, such a blind-folded application of branch and
bound exhibits poor convergence. We propose a modified form of the branch and
bound algorithm that reformulates the original non-convex program at every node
of the branch and bound tree thereby expediting convergence. We specialize the
algorithm for the cardinality constrained hyperbolic programs in Section 7. Com-
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putational experiments in Section 8 explore the relaxation bounds of the various
reformulations and compare the solution effort of the proposed branch and bound
algorithm to the commercial integer programming solver CPLEX 6.0 [7] for car-
dinality constrained hyperbolic programs. Finally, the p-choice facility location
problem is described as an application of the cardinality constrained hyperbolic
programs. This formulation is used to locate restaurant franchises in the city of
Edmonton, Canada. The computational experience indicates that the proposed re-
formulation strategy along with tightening of the reformulations at each node of
the branch and bound tree is extremely effective for solving hyperbolic programs.

2. Extensions of Fractional Functions

We first review some definitions and results from [43] that we use to construct the
convex extensions of fractional functions.

DEFINITION 2.1. ([43]). Let C be a convex set and X ⊆ C. A convex extension
of a function φ : X 
→ R over C is any convex function η : C 
→ R such that
η(x) = φ(x) for all x ∈ X.

DEFINITION 2.2. ([43]). Let C be a convex set and X ⊆ C. A concave extension
of a function φ : X 
→ R over C is any concave function χ : C 
→ R such that
χ(x) = φ(x) for all x ∈ X.

THEOREM 2.3. ([43]). Let L(x1, . . . , xk) be a multilinear function where xj ∈
[xLj , xUj ] for j = 1, . . . , k. Define Hk = ∏k

j=1[xLj , xUj ] and let Ek be the set of
extreme points of Hk. The convex (concave) envelope of L(x1, . . . , xk) forms the
convex (concave) extension of L : Ek 
→ R over Hk with the smallest epigraph
(hypograph).

Consider the problem

(P) max{φ(x) | x ∈ X}.
It is clear from the above definitions that φ(x) : X 
→ R can be replaced by its
concave extension, χ(x) : C 
→ R, if such an extension is possible to construct.
Then, max{χ(x) | x ∈ C}, is a convex relaxation of (P).

In this section, we identify the convex and concave extensions of rational terms
of the form

(LF) g = a0 +∑
j∈N ajxj

b0 +∑
j∈N bjxj

where x ∈ {0, 1}n. Note that the objective in (H) consists of a sum of several terms
of the form (LF).
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We denote an n-dimensional hypercube by Hn and its extreme points by En.
Also Un denotes [0, 1]n and Bn denotes {0, 1}n. The convex envelope of a function
φ will be denoted by convenv(φ).

Let us first consider the quadratic form φ(x, f ) = f b0 + f
∑

j∈N bjxj + a0 +∑
j∈N ajxj such that x ∈ Un and f ∈ [f l, f u].

THEOREM 2.4. The convex envelope of φ(x, f ) = f b0 + f
∑

j∈N bjxj + a0 +∑
j∈N ajxj over Un × [f l, f u] is given by:

convenv (φ(x, f )) = f b0 +
∑
j∈N

convenv(bjf xj )+ a0 +
∑
j∈N

ajxj .

Proof. Since f b0 + a0 +∑
j∈N ajxj is linear, it follows that

convenv (φ(x, f )) = f b0 + convenv


∑

j∈N
bjf xj


+ a0 +

∑
j∈N

ajxj .

Let the epigraph of the convex envelope of
∑

j∈N bjf xj be #, and the epigraph of
the convex envelope of bjf xj be #j , j ∈ N . Let #l and #l

j be the restrictions of #
and #j , respectively, when f = f l and #u and #u

j be the restrictions of # and #j ,
respectively, when f = f u. Consider any point (x0, f 0) ∈ Un×[f l, f u] such that
f 0 = λf l + (1− λ)f u. Since φ is linear when x is fixed, # is the convexification
of #l and #u such that

#|f=f 0 = λ#l + (1− λ)#u.

However, the restriction of φ when f = f l or f = f u is linear and hence separable

#|f=f 0 = λ
∑
j∈N

#l
j + (1− λ)

∑
j∈N

#u
j .

By the same token,

#j |f=f 0 = λ#l
j + (1− λ)#u

j .

Hence,

# =
∑
j∈N

#j .

In other words,

convenv (φ(x, f )) = f b0 +
∑
j∈N

convenv(bjf xj )+ a0 +
∑
j∈N

ajxj . �
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The convex and concave envelopes of bilinear terms of the form bjf xj are well
known [2, 26]. Using these, it follows readily from Theorem 2.4 that the epigraph
of the convex envelope of φ(x, f ) is the following polyhedral set:

(CV ) zm = f b0 +
∑
j∈N

bj zj + a0 +
∑
j∈N

ajxj

zj � f + f uxj − f u j ∈ N, if bj > 0
zj � f lxj j ∈ N, if bj > 0
zj � f uxj j ∈ N, if bj < 0
zj � f + f lxj − f l j ∈ N, if bj < 0

and the hypograph of the concave envelope is:

(CC) zm = f b0 +
∑
j∈N

bj zj + a0 +
∑
j∈N

ajxj

zj � f uxj j ∈ N, if bj > 0
zj � f + f lxj − f l j ∈ N, if bj > 0
zj � f + f uxj − f u j ∈ N, if bj < 0
zj � f lxj j ∈ N, if bj < 0.

Consider now a general quadratic form q(x, y) = xtAy where A = [aij ] is an
n× p matrix, x = [x1 . . . , xn] ∈ Hn and y = [y1 . . . , yp] ∈ Hp.

THEOREM 2.5. convenvHn×Hp q(x, y) = q(x, y) if and only if for every aij �= 0
either xi or yj is at one of its bounds.

Proof. (⇒) Consider a point (x0, y0) such that x0 = [x0
1 , . . . , x

0
n] and y0 =

[y0
1 . . . , y

0
p]. Assume that there exists an aij �= 0 such that neither x0

i nor y0
j is at

one of its bounds. Then, consider the neighborhood S of (x0, y0), S ⊂ Hn defined
as

S = {
(x, y) | xu = x0

u ∀u �= i, yv = y0
v ∀v �= j

} ∩Hn.

On S, q(x, y) = aij xiyj + c for some constant c. Or,

q(x, y) = aij
1

4
(xi + yj )

2 − aij
1

4
(xi − yj )

2 + c.

Depending on the sign of aij , q(x, y) is strictly concave in either [1, 1] or [1,−1]
direction in the subspace spanned by xi and yj . Since neither x0

i nor y0
j is at one of

its bounds, both directions are feasible. Therefore, it follows that

convenvHn×Hp q(x, y) < q(x, y).



390 M. TAWARMALANI, S. AHMED AND N. V. SAHINIDIS

(⇐) The convex envelope of q(x, y) over Hn ×Hp at (x0, y0) is (see [23]),

(C) convenvHn×Hp q(x0, y0) = min
n+p+1∑
r=1

λrq(x
r , yr )

s.t.
n+p+1∑
r=1

λrx
r = x0

n+p+1∑
r=1

λry
r = y0

n+p+1∑
r=1

λr = 1

where (xr , yr ) ∈ Hn ×Hp and λr ∈ (0, 1) for all r. Let

I = {
i | x0

i is at one of its bounds
}

J = {
j | y0

j is at one of its bounds
}
.

Define F to be the face of Hn ×Hp expressed as

F = {
(x, y) | xi = x0

i for i ∈ I, yj = y0
j for j ∈ J}

.

If (x0, y0) is obtained as a convex combination of points

(x1, y1), . . . , (xn+p+1, yn+p+1)

when the minimum in (C) is attained then, for any r ∈ {1, . . . , n + p + 1} such
that λr > 0, (xr , yr ) ∈ F . Since for every element aij �= 0, either x0

i or y0
j is at its

bound, q is linear on F . Hence,

q(x0, y0) �
n+p+1∑
r=1

λrq(x
r , yr ).

Moreover, convenvHn×Hp q(x0, y0) � q(x0, y0). Hence,

convenvHn×Hp q(x0, y0) = q(x0, y0). �
COROLLARY 2.6. Consider the quadratic form q(x, y) = xtAy : En×Ep 
→ R.
Then, convenvHn×Hp q(x, y) is a convex extension of q(x, y) over Hn ×Hp.

In fact, it follows from Theorem 2.3 that the convenvHn×Hp q(x, y) is the convex
extension with the smallest epigraph.

REMARK 2.7. The quadratic form q(x, y) is closed under negation. Hence, The-
orem 2.5 implies that the convex and concave envelopes are exact if and only if for
every aij �= 0 either xi or yj is at one of its bounds.



GLOBAL OPTIMIZATION OF 0− 1 HYPERBOLIC PROGRAMS 391

Returning to the function φ(x, f ), it is clear from Theorem 2.5 and Remark 2.7
that the convex and concave envelopes of φ are exact when x ∈ Bn and hence
form the convex and concave extensions of φ restricted to Bn × [f l, f u]. From
this equivalence, it follows readily that we can replace a term of the form φ(x, f )

appearing in a mathematical program where x ∈ Bn by the polyhedral sets (CV)
and (CC).

Recall now the rational term

(LF) g = a0+∑
j∈N aj xj

b0+
∑

j∈N bj xj

which may be written as

(M1) f a0 + f
∑

j∈N ajxj = g

f b0 + f
∑

j∈N bjxj = 1

or as

(M2) gb0 + g
∑
j∈N

bjxj − a0 −
∑
j∈N

ajxj = 0

In either case, the functions generated are of the form of φ(x, f ) and can be
replaced by their convex and concave extensions given in (CV) and (CC). This
provides us with two different reformulation schemes for hyperbolic programs.

3. Reformulations of the Hyperbolic Program

In the previous section, we have seen that a fractional term of binary variables
may be reformulated using linear inequalities in two different ways. Thus, using
different combinations of these forms, we can reformulate problem (H) in a number
of different ways.

Note that problem (H) consists of a sum of several fractional terms, each in the
form of (LF). Using the form (M1) along with the convex and concave envelopes
from (CV) and (CC) we get the following reformulation of (H):

(R1) max
m∑
i=1

fiai0 +
m∑
i=1

n∑
j=1

aij uij

s.t. Dx � c

bi0fi +
n∑

j=1

bij uij = 1 i = 1, . . . , m

uij � f u
i xj i = 1, . . . , m; j = 1, . . . , n (1)

uij � fi + f l
i xj − f l

i i = 1, . . . , m; j = 1, . . . , n (2)

uij � fi + f u
i xj − f u

i i = 1, . . . , m; j = 1, . . . , n (3)

uij � f l
i xj i = 1, . . . , m; j = 1, . . . , n (4)

x ∈ {0, 1}n
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where variable fi is used for the term 1/(bi0 + bTi x) and uij is used for the term
fixj , and f l

i and f u
i are valid lower and upper bounds for fi . Note that, along with

the integrality requirement, constraints (1) and (2) form the concave extension and
constraints (3) and (4) form the convex extension. Li [24] and Wu [46] have sug-
gested special cases of this reformulation where the lower bounds on the fractional
terms are assumed to be zero.

REMARK 3.1. If for each i = 1, 2, . . . , m, bi0 + bTi x > 0 on the feasible region
of (H), then the constraints

fi � 1

bi0 +
n∑

j=1

bij xj

i = 1, . . . , m (5)

are convex. In such a case, the convex extension of fibi0+fi ∑n
j=1 bij xj is implied

and may be replaced by the above convex inequalities in (R1).

Following the above remark, a reformulation (R2) is constructed replacing con-
straints (3) and (4) by the convex nonlinear inequalities (5).

(R1) is a maximization problem, thus, if ai0 + aTi x > 0 for all i, we only
need the concave extensions of the fractional terms as far as the optimal solution is
concerned. The concave extension of the fractional term is provided by the convex
extension of fibi0 + fi

∑n
j=1 bij xj . Hence, the claim is true:

REMARK 3.2. If ai0 + aTi x > 0 over the feasible region of the mathematical
program, then the concave extension of fibi0+fi ∑n

j=1 bij xj can be dropped from
(R1).

Next, we employ the form (M2) to derive another reformulation of (H). Since (H)
is a maximization problem, it may be reformulated as:

(H) max
m∑
i=1

gi

s.t. gi �
ai0+

n∑
j=1

aij xj

bi0+
n∑

j=1

bij xj

Dx � c

x ∈ {0, 1}n

(6)

Since bi0 +∑n
j=1 bij xj > 0, inequality (6) may be rewritten as

gibi0 + gi
∑
j∈N

bij xj − a0 −
∑
j∈N

aij xj � 0.
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Hence, replacing gibi0 + gi
∑

j∈N bij xj by the epigraph of its convex extension is
adequate for the reformulation and the concave extension is redundant as far as the
optimal solution is concerned. We can thus claim:

REMARK 3.3. When (M2) is employed to reformulate (H), the concave extension
may be dropped in the reformulation.

As a consequence of Remark 3.3, it follows that (H) can be reformulated as:

(R3) max
m∑
i=1

gi

s.t. Dx � c

bi0gi +
n∑

j=1

bij vij = ai0 +
n∑

j=1

aij xij i = 1, . . . , m

vij � gui xj i = 1, . . . , m; j = 1, . . . , n; bij < 0 (7)

vij � gi + glixj − gli i = 1, . . . , m; j = 1, . . . , n; bij < 0 (8)

vij � gi + gui xj − gui i = 1, . . . , m; j = 1, . . . , n; bij > 0 (9)

vij � glixj i = 1, . . . , m; j = 1, . . . , n; bij > 0 (10)

x ∈ {0, 1}n

where variable gi is used for the term (ai0 + aTi x)/(bi0 + bTi x) and vij is used for
the term gixj , and gli and gui are valid lower and upper bounds for gi . Note that,
depending upon the sign of bij , the constraints (7) and (8), and (9) and (10) form
the concave extensions.

The reformulations (R1) and (R3) can also be combined to construct the follow-
ing:

(R4) max
n∑

i=1

gi

s.t. Dx � c

gi = fiai0 +
n∑

j=1

aij uij i = 1, . . . , m

bi0fi +
n∑

j=1

bij uij = 1 i = 1, . . . , m

uij � f u
i xj i = 1, . . . , m; j = 1, . . . , n

uij � fi + f l
i xj − f l

i i = 1, . . . , m; j = 1, . . . , n

uij � fi + f u
i xj − f u

i i = 1, . . . , m; j = 1, . . . , n

uij � f l
i xj i = 1, . . . , m; j = 1, . . . , n
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bi0gi +
n∑

j=1

bij vij = ai0 +
n∑

j=1

aij xij i = 1, . . . , m

vij � gui xj i = 1, . . . , m; j = 1, . . . , n; bij < 0

vij � gi + glixj − gli i = 1, . . . , m; j = 1, . . . , n; bij < 0

vij � gi + gui xj − gui i = 1, . . . , m; j = 1, . . . , n; bij > 0

vij � glixj i = 1, . . . , m; j = 1, . . . , n; bij > 0

x ∈ {0, 1}n

To obtain tighter relaxations of the reformulated problem, we can introduce
additional valid inequalities obtained by multiplying the original constraint set of
(H) by the variables corresponding to the fractional terms. Specifically, we can
introduce the following constraints to (R1):

n∑
j=1

drjuij − f l
i

n∑
j=1

drjxj � crfi − crf
l
i r = 1, . . . , k; i = 1, . . . , m (11)

f u
i

n∑
j=1

drjxj −
n∑

j=1

drjuij � crf
u
i − crfi r = 1, . . . , k; i = 1, . . . , m (12)

and the following constraints to (R3):

n∑
j=1

drjvij − gli

n∑
j=1

drjxj � crgi − crg
l
i r = 1, . . . , k; i = 1, . . . , m (13)

gui

n∑
j=1

drjxj −
n∑

j=1

drjvij � crg
u
i − crgi r = 1, . . . , k; i = 1, . . . , m (14)

where drj are the elements of the constraint matrix D and cr are the elements of
the right hand side vector c. Let (R5) be obtained by adding constraints (11) and
(12) to (R1) and (R7) be obtained by adding constraints (13) and (14) to (R3). It
is obvious that (R5) and (R7) are valid reformulations of (H). In (R5) and (R7),
we retain the concave as well as the convex extensions since in the presence of
constraints (11), (12), (13) or (14) the concave extensions are no longer redundant
when the integrality requirements are dropped.

Another reformulation, (R6), is constructed from (R5) by adding the convex
non-linear constraints (5). Our final reformulation (R8) is constructed by com-
bining (R5) and (R7) in a similar manner as (R4) is constructed from (R1) and
(R3).

Note that no additional binary variables are introduced in the reformulations.
However, a large number of continuous variables are introduced. Table 1 compares
the size of the various reformulations (R1)–(R8) in terms of m, n and k. The relative
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Table 1. Size of the reformulations

Reformulation Number of continuous Number of constraints

variables Linear Nonlinear

(R1) m+mn k +m+ 4mn 0

(R2) m+mn k +m+ 2mn m

(R3) m+mn k +m+ 2mn 0

(R4) 2(m+mn) k + 3m + 6mn 0

(R5) m+mn k + 2km+m+ 4mn 0

(R6) m+mn k + 2km+m+ 2mn m

(R7) m+mn k + 2km+m+ 4mn 0

(R8) 2(m+mn) k + 4km+ 3m + 8mn 0

Figure 1. Comparison of reformulation bounds: Ri→ Rj⇔ VLRi � VLRj.

importance of these reformulations depends on the strength the bounds offered by
their relaxations.

4. Upper Bounding of 0− 1 Hyperbolic Programs

Relaxing the integrality requirement in the reformulations (R1)–(R8) results in
convex upper bounding problems suitable for use within a branch and bound frame-
work. We denote these relaxations by (LR1)–(LR8) respectively. The optimal value
of a mathematical program (R) will be denoted by VR. The upper bounds obtained
from the reformulations are compared in Figure 1. These relationships are clear
from the construction of the reformulations.

As mentioned earlier, the reformulations proposed in [24] and [46] are spe-
cial cases of (R1). Thus, it is clear from the relationships in Figure 1, that the
bounds obtained from the reformulations (R2), (R4), (R5), (R6) and (R8) dominate
those obtained from the reformulations in [24] and [46]. As an example of the
relative tightness of the bounds from the different reformulations, we consider the
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following numerical example from [24]:

max − 1+ x1

0.5x1 + x2
− 2− 3x2

2x2 + x3 + x4

s.t. x1 + x2 + x3 � 2
2x1 + 3x2 − 4x4 � 2

0.5x1 + x2 > 0
2x2 + x3 + x4 > 0
x1, x2, x3, x4 ∈ {0, 1}

The reformulation proposed in [24] provides an LP relaxation bound of −0.5. Re-
formulations (R5) and (R7) provide LP relaxation bounds of−0.6923 and−0.6563,
respectively. In all three cases, the reformulations were constructed using bounds
on the fractional terms that were determined by solving unconstrained single ratio
0 − 1 hyperbolic programs. The optimal solution to the problem is −0.75. Thus,
(R5) and (R7) reduce the relaxation gap provided in [24] by 76.9 and 62.4%,
respectively. Further computational results on the comparison of the bounds from
the various reformulations are presented in Section 8.

Note that the objective function of (H) may be expressed as
∑m

i=1 gi(x) where

gi(x) =
ai0 +

n∑
j=1

aij xj

bi0 +
n∑

j=1

bij xj

.

Let gui i = 1, . . . , m be the tightest upper bounds available on the following
maximization problem:

max
{
gi(x) | Dx � c, x ∈ {0, 1}n}.

Such bounds may be obtained by solving single ratio hyperbolic programs and
will be discussed in the next section. Upper bounds on gi(x) may also be obtained
over the linear relaxation of the constraint set of (H) using the Charnes–Cooper
transformation for single ratio fractional programs [6]. Let us denote these bounds
by qui , i = 1, . . . , m. We then define VUB = ∑m

i=1 g
u
i and VCC = ∑m

i=1 q
u
i . It is

easy to see that VUB and VCC provide valid upper bounds for VH. We shall now
compare the reformulation bounds to these simple bounding strategies.

THEOREM 4.1. VH � VLR3 � VUB. If the extreme points of the feasible region of
(H) are binary-valued and VH < VUB, then VLR3 < VUB.

Proof. Since (LR3) is a valid upper bounding schemes for (H), VH � VLR3.
Since gi � gui , it follows that VLR3 � VUB.

If there is an optimal solution to (LR3) which is integral, then VH = VLR3 and
hence VH < VUB implies VLR3 < VUB.
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Now assume that there does not exist an integral solution to (LR3). Let x0 be
the optimal solution of (LR3). If VLR3 = VUB, then each gi is at its upper bound.
It follows from Theorem 2.5, that (R3) exactly represents the fractional program
when each gi is at its bound. Let F be the smallest face of Un such that x0 ∈ F .
Then x0 ∈ ri(F ). Since, for all i, gi(x) is an explicit quasi-convex function which
achieves its global maximum in ri(F ), each gi(x) is constant over F (see Theorem
2.3.7 in [41]). Hence, gi(x), i = 1, . . . , m attain their optimal value at every x ∈
F . By assumption, the extreme points of F are binary vectors. Hence, there exists
an integral optimum of (LR3) thereby contradicting the assumption. �
The above result implies that, if VLR3 = VUB, then VH = VLR3 = VUB. Moreover,
from Figure 1, it also follows that the bounds from (R4), (R7) and (R8) dominate
VUB.

PROPOSITION 4.2. VH � VLR5 � VCC.
Proof. Consider the inequalities

n∑
j=1

âij uij −
n∑

j=1

âij xjf
l
i � b̂i (fi − f l

i ) i = 1, . . . , k (15)

n∑
j=1

âij xj � b̂i i = 1, . . . , k (16)

Since f l
i � 0, from 16

−
n∑

j=1

âij xjf
l
i � −b̂if l

i i = 1, . . . , k (17)

Then, by 17 and 15, it follows that
n∑

j=1

âij uij � b̂ifi i = 1, . . . , k.

Therefore, the Charnes-Cooper transformation is embedded in (R5) implying that
VH � VLR5 � VCC. �
From Figure 1, it follows that the bounds from (R6) and (R8) dominate VCC. The
above results will be used in Section 8.3 to show that the proposed reformulations
provide better bounds than those in [37] for the cardinality constrained 0 − 1
hyperbolic program.

5. Bounds on the Rational Terms

Bounds on the fractional terms have a significant effect on the tightness of the
relaxation. We show in [42] that the following result holds.
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THEOREM 5.1. Consider the function φ(x, f ) = f b0 + f
∑

j∈N bjxj − a0 +∑
j∈N ajxj where x ∈ Un. Let α(x, f ) be the convex envelope of φ(x, f ) when

f ∈ [f l, f u] and αt(x, f ) be the convex envelope of φ(x, f ) when f ∈ [f l, f u
t ],

where f u
t < f u. Let N+ = {j | bj > 0} and N− = {j | bj < 0}. Let x =

[x1, . . . , xn]. Then, αt(x0, f0) > α(x0, f0), (x0, f 0) ∈ Un × [f l, f u
t ] if and only if

(x0, f 0) ∈
⋃
j∈N+

{
(x, f ) | f + (f u

t − f l)xj − f u
t > 0, xj < 1

} ∪
⋃
j∈N−

{
(x, f ) | f + (f l − f u

t )xj − f l > 0, xj > 0
}

The above theorem characterizes the exact non-empty region over which the
convex envelope tightens when tighter bounds are used on the fractional terms.
It follows that the algorithmic efficiency of any method solving the hyperbolic
program depends not only on the reformulation employed but also on the tightness
of the bounds on the fractional terms used in the reformulation.

Tight bounds on the fractional term can be obtained by solving constrained
single ratio 0− 1 hyperbolic programs. Although such problems are typically dif-
ficult, it is possible to develop strongly polynomial algorithms for some specially
structured problems. We will rely on an important result due to Megiddo [27] in
this context.

THEOREM 5.2. ([27]). Consider the following two problems:

(A) max
n∑

j=1

cjxj

s.t. (x1, . . . , xn) ∈ D

(B) max

n∑
j=1

ajxj

n∑
j=1

bjxj

s.t. (x1, . . . , xn) ∈ D
(assuming the denominator is always positive).

If problem (A) is solvable within O(p(n)) comparisons and O(q(n)) additions,
then problem (B) is solvable in time O(p(n)(q(n)+ p(n))).

The proof of the above theorem is constructive in the sense that, given an al-
gorithm for problem (A), Megiddo provides a recipe for developing an algorithm
for problem (B). The recipe exploits the following well-known result:
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LEMMA 5.3. ([41]). Let x∗ be an optimal solution to (B) and let

t∗ :=
a0 +

n∑
j=1

ajx
∗
j

b0 +
n∑

j=1

bjx
∗
j

.

Define

F(t) = max
(x1,...,xn)∈D


a0 +

n∑
j=1

ajxj − t


b0 +

n∑
j=1

bjxj





 .

Then
(a) F(t) > 0 if and only if t < t∗,
(b) F(t) = 0 if and only if t = t∗,
(c) F(t) < 0 if and only if t > t∗.

The algorithm for solving (B) developed in the proof of Theorem 5.2 determines t∗
by parametrically solving F(t) = 0 using the algorithm for (A). A comparison is
performed by algorithm (A) to choose one out of two possible computation paths.
Since F(t) defines a parametric family of problems of type (A), the comparison
must decide if a linear function of the form α+βt is less than or greater than zero.
It follows from Lemma 5.3 that t∗ > α/β whenever F(α/β) > 0 and t∗ < α/β

whenever F(α/β) < 0. Thus, we disregard all values of t greater than α/β if
F(α/β) < 0 and disregard all values of t less that α/β if F(α/β) > 0. The choice
of the appropriate computation path is now unique and can be easily performed.

As mentioned in [27], the above algorithm can be accelerated when the al-
gorithm (A) only performs comparisons of input elements. In this case, the break-
points of F(t) are searched using the median finding algorithm to locate the linear
segment of F(t) containing the optimal t∗. As an example, we apply this acceler-
ated scheme to the unconstrained single ratio 0− 1 hyperbolic program to develop
an algorithm with 8(n) complexity. The single ratio unconstrained 0−1 hyperbolic
program is formulated as:

(P ) max

a0 +
n∑

j=1

ajxj

b0 +
n∑

j=1

bjxj

s.t. xj ∈ {0, 1} j = 1, . . . , n
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where the denominator is assumed to be positive. The function F(t) in Lemma 5.3
reduces to:

F(t) = max
xj∈{0,1}


a0 +

n∑
j=1

ajxj − t


b0 +

n∑
j=1

bjxj





 .

Meggido’s scheme exploits the solution algorithm for the following problem:

(L) max a0 +
n∑

j=1

ajxj − tb0 − t

n∑
j=1

bjxj

s.t. xj ∈ {0, 1}.
(L) can be easily solved by setting xj equal to 1 if (aj − tbj ) > 0 and 0 otherwise.
Thus, aj/bj for all j are the critical values for t which need to be tested and form
the break-points in Megiddo’s scheme. Since F(t) is piecewise linear between any
two values of aj /bj , we search the n breakpoints to locate t∗. We now state a
slightly modified version of Megiddo’s algorithm for solving (P) that records cer-
tain calculations while solving problems of the type (L) to improve the efficiency
of the algorithm:
Step 0. J ← {0, . . . , n}.
Step 1. Let T = {aj/bj | j ∈ J }. If |J | = 2, then let x∗j to 0 for all j ∈ J\{0}

such that aj � min{T }bj , x∗j = 1 for all other j ∈ J\{0} and terminate.

Step 2. Calculate t̂ = median{T }.
Step 3. Let Jg = {j ∈ J | aj > t̂bj } ∪ {0} and J1 = {j ∈ J | aj � t̂bj , j �= 0}.

Calculate F(t̂) =∑
j∈Jg aj − t̂

∑
j∈Jg bj .

Step 4. If F(t̂) = 0, let x∗j = 1 for all j ∈ Jg, x∗j = 0 for all j ∈ J\Jg and
terminate. If F(t̂) > 0, let x∗j = 0 for all j ∈ J\Jg , J ← Jg and
return to Step 1. If F(t̂) < 0, let x∗j = 1 for all j ∈ J1, J ← J\J1,
a0 ← a0 +∑

j∈J1
aj , b0 ← b0 +∑

j∈J1
bj , and return to Step 1.

PROPOSITION 5.4. Megiddo’s algorithm as applied to the unconstrained single
ratio 0− 1 hyperbolic program with positive denominator has 8(n) complexity.

Proof. The effort in each iteration of the above algorithm consists of determining
the median of the current set T of critical t values and solving problem F(t). Note
that the cardinality of T and J is halved in each iteration. Thus, the total time spent
by the algorithm in finding medians [4] and evaluating F(t) is n+n/2+n/4+· · ·
or O(n). The total effort required in evaluating F(t) is then O(n). Clearly, the
lower bound on the total time required is :(n), and so the result follows. �
The above algorithm developed by applying the constructive scheme of Megiddo is
equivalent to the 8(n) algorithm of Hansen et al. [20] for the unconstrained single
ratio 0− 1 hyperbolic program with a positive denominator.
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Saipe [37] developed an O(np) algorithm for single ratio 0 − 1 hyperbolic
programs with a single cardinality constraint, i.e.

D :=

xj ∈ {0, 1}, j = 1, . . . , n|

n∑
j=1

xj = p


 .

Problem (A) with D defined as above can be solved by first determining the order−
p statistic, ĉ, of the coefficients, cj , by using the linear median finding algorithm
of [4] in O(n) comparisons. Let J := {j |cj > ĉ}, the optimal solution value of
problem (A) is then given by

∑
j∈J cj + (p − |J |)ĉ, which requires O(p) addi-

tions. Thus, by Theorem 5.2, Megiddo’s scheme would give rise to an algorithm
for problem (B) of O(np + n2). Saipe [37] takes advantage of the result that the
variable xj corresponding to the index j = argmax{ai/bi | i = 1, . . . , m} is 1 in
an optimal solution to (P).

For problems with general constraint sets, one can derive the bounds in polyno-
mial time by relaxing the integrality requirements and solving the continuous hy-
perbolic program by using the Charnes–Cooper linear programming reformulation
[6].

6. A Branch and Bound Algorithm

In this section, we develop a branch and bound algorithm for the 0− 1 hyperbolic
program. A naive approach to solving (H) would be to apply standard branch and
bound techniques to its MILP reformulation. As has been pointed out in Section
5, the gap between the reformulation and its continuous relaxation is extremely
sensitive to the quality of the bounds on the fractional terms. Also, since in a
branch and bound framework, the feasible space of the subproblems at each node
is a subset of the feasible space of the problem at the root node, it is possible to
derive tighter bounds on the fractional terms over these smaller feasible spaces.
Therefore, in the branch and bound algorithm for (H), we propose to reformulate
the problem at every node of the branch and bound tree using the best available
bounds. Henceforth, we shall refer to this technique as node tightening.

We now present a formal statement of the algorithm. The following notation is
used:
k Iteration number
i Current node of the branch and bound tree
L List of active nodes
Ri Reformulated problem at the ith node
U(Ri) Upper bound on the solution of Ri

Uk Upper bound on the solution of (H) at the kth iteration
Lk Lower bound on the solution of (H) at the kth iteration
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Initialization:
Set k = 0, Lk = −∞.
Construct R0, the reformulation at the root node, and set U(R0) = +∞.
Include the root node in the list: L = {0}.

Main Step (Iteration k)
Step 1. Termination:

Set the upper bound Uk := maxi∈L{U(Ri)}.
Set L = L\{i} for all i with U(Ri) � Lk.
If L = φ stop, the current best solution is optimal. Else, set k = k + 1,
Uk = Uk−1 and Lk = Lk−1.

Step 2. Node Selection:
Select node i from L according to some node selection rule.
Set L = L\{i}.

Step 3. Node Tightening:
Get tight bounds on the fractional terms.
Reconstruct Ri using these bounds.

Step 4. Upper Bounding:
If the relaxation of Ri is desired to be solved, solve it and obtain U(Ri)

and go to Step 5. Else, go to Step 6.
Step 5. Lower Bounding:

If U(Ri) � Lk, go to Step 1.
Use a heuristic method to construct a feasible solution and update Lk.
Record the best known solution.

Step 6. Branching:
Use a branching strategy to obtain a set of new problems Ri1 , . . . , Riq

from Ri .
Update node list L = L ∪ {i1, i2, . . . , iq}.
Go to Step 1.

As mentioned earlier, the key difference between the above algorithm and standard
branch and bound schemes for global optimization is in the node tightening step.
The next two sections present specific implementations of the algorithm.
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7. Cardinality Constrained Hyperbolic Programs

Cardinality constrained hyperbolic programs are of the form:

(CCH) max
m∑
i=1

ai0 +
n∑

j=1

aij xj

bi0 +
n∑

j=1

bij xj

s.t.
n∑

j=1

xj = p

xj ∈ {0, 1} j = 1, . . . , n.

We shall demonstrate the efficacy of the proposed branch and bound algorithm for
0 − 1 hyperbolic programs through a specific implementation for (CCH). The ap-
plications of cardinality constrained hyperbolic program include scheduling com-
mon carriers [37] and p-choice facility location which we address in Section 8.3.

In [37], Saipe developed a specialized branch and bound algorithm for (CCH)
using the upper bound VUB described in Section 4, where the upper bound for each
fractional term is obtained employing Saipe’s algorithm for single ratio fractionals
as discussed in Section 5. We show next that (LR3)-(LR8) provide better bounds
than that used in [37].

COROLLARY 7.1. VCCH � VLR3 � VUB. If VCCH < VUB, then VLR3 < VUB.
Proof. Direct application of Theorem 4.1. �

COROLLARY 7.2. For (CCH), VUB = VCC and VCCH � VLR5 � VUB.
Proof. The set of feasible solutions given by

D =

xj ∈ [0, 1], j = 1, . . . , n |

n∑
j=1

xj = p




is a polytope with integral vertices. Hence, VCC = VUB. Then, it follows from
Proposition 4.2 that VCCH � VLR5 � VUB. �
The above results establish the dominance of bounds obtained from the reformu-
lations (R3) and (R5) over VUB. Recall, from Figure 4, that (R4) and (R7) provide
tighter bounds than (R3), and (R6) and (R8) provide tighter bounds than (R5).
Thus, the reformulations (R3)–(R8) provide tighter bounds than those used in [37].

Next, we apply the proposed reformulation technique to a numerical instance of
(CCH) from the literature. We consider Example 3 of [37] for which m = 3, n = 6
and p = 3. The values of the parameters aij and bij are shown in Table 2. The
bounding scheme employed in [37] at the root node provides an upper bound of
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Table 2. Data for Example 3 in [37]

1 2 3 4 5 6

a1j 9 2 3 5 8 7

b1j 6 2 8 2 9 1

a2j 9 8 5 2 1 3

b2j 8 8 7 3 6 1

a3j 9 2 2 4 3 5

b3j 7 2 7 6 4 5

5.119. The problem was eventualy solved to optimality in seven nodes. The optimal
objective value is 4.729. Upon applying reformulation (R7) to this example with
the bounds on the fractional terms determined by Saipe’s algorithm for single ratio
problems, we find that the LP relaxation of the reformulation provides the optimal
solution.

8. Computational results

In this section, we provide detailed computational results for the cardinality con-
strained hyperbolic program (CCH). We first compare the bounding strengths of
the various reformulation schemes proposed in Section 5. Next, we describe an
implementation of the proposed branch and bound strategy to solve this problem to
global optimality. Finally, the proposed algorithm is used to solve a facility location
problem.

8.1. COMPARISON OF BOUNDS

To compare the bounds obtained from the various reformulations, we solve relax-
ations for randomly generated instances of (CCH). The coefficients aij and bij for
problems with different values of m,n and p were generated from a uniform dis-
tribution with range [1, 1000]. The reformulations were modeled using GAMS [5]
while the LP relaxations were solved using OSL [30] and the NLP relaxations were
solved using MINOS [28]. The optimal solution of each problem was obtained
by solving the MILP reformulation of type (R8) using OSL [30]. The minimum,
average and maximum percentage relaxations gaps and the average CPU times, in
seconds, for solving the relaxations are compared in Tables 3–6. The CPU times
reported do not include the time spent in deriving bounds on the fractional terms.
The averages are computed based upon five instances for each problem type. All
computations were carried out on an IBM RS/6000 power PC with 64 MB RAM.
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The theoretical dominance of the various relaxation bounds as discussed in
Section 4 can be clearly observed in Tables 3 and 8. For some cases the non-
linear relaxation of (R2) could not be solved to optimality owing to numerical
difficulties with MINOS. This fact results in the discrepancy between the bounds
obtained from (R1) and (R2). For these cases, the numbers in parenthesis indicate
the number of instances solved. For problem 20−20−12, the non-linear relaxation
of (LR6) could not be solved for any of the five instances. The CPU times reflect the
relative sizes of the various reformulations as compared in Table 1. The relaxations
(LR2) and (LR6) presumably take more time to optimize due to the presence of
non-linearities in these relaxations. From Tables 3–6, it is clear that even though the
time taken to solve (LR1)–(LR8) is more than the linear programming relaxation
of Li’s reformulation [24], the significant improvement in the bounds derived using
(LR1)–(LR8) justify their use in a branch and bound algorithm. This is the subject
matter of the next subsection.

8.2. PERFORMANCE OF THE PROPOSED ALGORITHM

The proposed branch and bound algorithm was implemented for (CCH) using
BARON [35], a general purpose global optimization package. The package em-
ploys a branch and reduce optimization strategy, integrating conventional branch
and bound with a wide array of domain reduction tools and a combination of
branching rules (see [33, 34, 10, 40] for algorithmic details; and [8, 25, 17, 44, 36]
for applications). In addition to providing several ready to use modules for certain
classes of global optimization problems, BARON is capable of solving any global
optimization problem as long as the problem specific upper and lower bounding
subroutines are supplied by the user. It is the latter feature of this code we build
upon here.

In the implementation of the proposed algorithm for 0−1 hyperbolic programs,
we have augmented the upper bounding step with a node tightening step. For
(CCH), tight bounds on the fractional terms were obtained by solving single ratio
0 − 1 hyperbolic programs using Saipe’s algorithm. These bounds were used in
turn to construct tight reformulations of the problem at every node of the branch
and bound tree. The continuous relaxation of the reformulation was then solved
to obtain the upper bound. The lower bounding was carried out by heuristically
solving CCH using the Genetic Algorithm (GA) described in [21]. In our imple-
mentation, the GA was applied to the original formulation (H) which permits easy
representation of the solutions in the form of binary vectors. In addition to fitness-
based updation of the solution population, at each iteration of the branch and bound
algorithm, the best solution to the relaxation was rounded to construct a feasible
solution to (CCH) and appended to the solution population maintained by the GA.
Introduction of these solutions considerably improved the performance of the GA
heuristic. After a pre-specified number (100) of children generation, the GA was
terminated and the best solution from the population was used to update the lower
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Table 3. Comparison of various bounds (m = 5)

Problem Li [24] R1 R2

m-n-p min ave max CPU s min ave max CPU s min ave max CPU s

5-10-3 25.02 61.57 91.34 0.22 0.00 5.03 11.85 0.34 0.00 5.03 11.85 0.28

5-10-5 61.45 92.25 138.82 0.24 2.30 4.34 6.55 0.33 2.08 4.30 6.55 0.40

5-10-7 69.70 118.20 177.85 0.25 0.03 1.28 3.67 0.33 0.03 1.28 3.67 0.36

5-20-8 60.01 155.06 298.81 0.46 3.53 6.66 13.33 0.80 3.51 6.65 13.33 1.19

5-20-10 59.77 165.75 302.13 0.46 2.29 4.81 7.61 0.81 2.29 4.81 7.61 1.16

5-20-12 63.46 172.50 299.45 0.49 1.53 2.97 4.39 0.84 1.53 2.96 4.39 1.11

R3 R4 R5

min ave max CPU s min ave max CPU s min ave max CPU s

5-10-3 0.43 14.01 24.48 0.32 0.00 4.75 10.62 0.87 0.00 2.83 5.24 0.37

5-10-5 2.83 9.68 14.08 0.37 1.09 3.47 5.76 0.98 0.00 2.65 6.55 0.38

5-10-7 2.70 3.66 5.76 0.38 0.02 1.12 3.35 0.97 0.00 0.82 2.37 0.38

5-20-8 11.20 20.46 34.67 0.92 3.22 6.60 13.33 2.67 1.43 5.25 11.67 0.96

5-20-10 8.77 13.96 22.77 0.91 2.29 4.77 7.61 2.98 1.45 3.63 7.03 0.93

5-20-12 5.85 8.31 12.67 0.94 1.53 2.92 4.39 2.78 1.17 2.19 3.11 0.94

R6 R7 R8

min ave max CPU s min ave max CPU s min ave max CPU s

5-10-3 0.00 2.83 5.24 0.35 0.00 2.69 4.96 0.36 0.00 1.87 3.21 0.97

5-10-5 0.00 2.65 6.55 0.43 0.00 2.31 4.25 0.39 0.00 1.67 3.08 1.00

5-10-7 0.00 0.81 2.37 0.45 0.04 0.67 1.69 0.37 0.00 0.34 0.92 1.01

5-20-8 1.43 5.25 11.67 1.97 1.30 4.96 11.08 0.99 0.82 4.23 10.30 3.04

5-20-10 1.45 3.63 7.03 2.02 1.30 3.47 7.01 0.97 0.90 2.96 6.18 3.15

5-20-12 1.17 2.19 3.11 1.92 0.89 1.70 2.52 0.94 0.67 1.43 2.27 3.11

bound in the branch and bound algorithm. The GA served to provide good solutions
early on in the branch and bound tree. However, no substantial deterioration of
the algorithm was observed without this heuristic lower bounding scheme. In this
implementation, the conventional integer programming scheme of branching on
the variables taking fractional values was used.

Comparing the average gap and the solution times of the various reformulations
for (CCH) in Tables 3 and 4, it appears that for these problems, reformulations (R5)
and (R7) are the most effective. We chose to use the reformulation (R7) within our
branch and bound strategy. Consequently, the upper bounding was carried out by
solving the LP relaxation of (R7) by CPLEX 6.0 [7].

To demonstrate the advantages of node tightening, the proposed algorithm has
been compared to solving the MIP reformulation (R7) derived at the root node
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Table 4. Comparison of various bounds (m = 10)

Problem Li [24] R1 R2

m-n-p min ave max CPU s min ave max CPU s min ave max CPU s

10-10-3 62.13 90.27 151.22 0.44 0.64 7.70 14.69 0.77 0.59 7.67 14.60 1.30

10-10-5 68.47 109.22 170.35 0.45 2.96 4.01 5.59 0.82 2.94 4.00 5.59 1.19

10-10-7 88.64 134.67 185.09 0.45 0.73 1.27 1.57 0.78 0.68 1.22 1.55 1.02

10-20-8 117.95 137.90 169.09 0.93 8.08 14.76 22.60 2.69 8.08 14.76 22.60 7.99

10-20-10 116.83 142.34 164.42 0.99 5.38 10.01 16.29 2.73 5.38 10.01 16.29 9.10

10-20-12 114.88 146.84 174.72 0.96 4.01 5.38 8.95 2.62 4.00 5.55 8.95 5.52

R3 R4 R5

min ave max CPU s min ave max CPU s min ave max CPU s

10-10-3 12.42 24.28 37.02 0.90 0.30 7.39 14.21 2.46 0.00 5.53 11.60 0.91

10-10-5 12.02 14.56 16.24 1.01 2.95 4.00 5.58 2.45 0.44 1.91 4.12 0.95

10-10-7 3.01 3.89 5.30 0.90 0.59 1.22 1.48 2.72 0.37 0.64 1.06 0.85

10-20-8 24.75 33.60 44.20 2.87 8.07 14.74 22.57 10.11 7.04 13.57 20.48 2.78

10-20-10 15.78 21.46 28.94 2.95 5.19 9.93 16.29 11.23 4.06 8.95 14.86 3.02

10-20-12 9.80 12.08 15.86 2.94 3.74 5.24 8.95 11.30 2.55 4.51 7.54 2.78

R6 R7 R8

min ave max CPU s min ave max CPU s min ave max CPU s

10-10-3 0.00 5.53 11.59 1.52 0.00 5.24 11.72 1.00 0.00 4.05 9.15 2.61

10-10-5 0.44 1.91 4.12 1.48 0.03 1.35 3.33 1.24 0.00 1.20 3.01 2.97

10-10-7 0.33 0.60 1.05 1.46 0.08 0.63 1.16 0.84 0.07 0.38 0.90 2.88

10-20-8 7.04 13.57 20.48 8.69 6.80 13.12 20.11 3.22 6.08 12.22 18.96 11.27

10-20-10 4.06 8.95 14.86 10.82 4.08 8.46 14.50 3.19 3.57 7.76 13.56 12.10

10-20-12 2.55 4.51 7.54 8.70 2.41 4.27 7.56 3.10 2.13 3.85 6.85 11.27

using the commercial MIP solver of CPLEX 6.0 [7]. The comparison was carried
out on a set of random test problems generated similarly as in Section 8.1. All
computations were carried out on an IBM RS/6000 power PC with 64MB RAM.

The results of the comparison are presented in Tables 7–10. For each of the
five instances of the same problem size, the tables show the total number of nodes
explored, the node at which the optimal solution was found, the maximum number
of nodes held in memory during the search and the total CPU seconds required
for both algorithms. In all cases, the proposed algorithm required fewer nodes than
CPLEX. The differences were much greater for problems with a larger number
of binary variables. In several cases, CPLEX was unable to solve the problems
to optimality within 1000000 iterations. As the previous section has demonstrated
that Li’s formulation [24] provides weaker bounds than (R7), using Li’s formu-
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Table 5. Comparison of various bounds (m = 15)

Problem Li [24] R1 R2

m-n-p min ave max CPU s min ave max CPU s min ave max CPU s

15-10-3 96.23 191.06 214.77 1.74 8.58 8.83 9.82 4.93 8.58 8.83 9.81 19.59

15-10-5 109.39 109.95 110.08 0.74 6.77 6.94 6.98 1.50 6.77 6.94 6.98 3.43

15-10-7 93.85 153.04 324.63 0.73 0.55 2.31 6.77 1.40 0.52 2.30 6.77 2.55

15-20-8 140.33 167.02 205.17 1.69 16.27 23.00 31.28 5.59 22.52 26.90 31.28 34.77(2)

15-20-10 132.53 166.85 211.20 1.80 10.18 13.83 18.87 6.70 10.18 10.34 10.49 33.19(2)

15-20-12 130.00 167.63 214.77 2.05 3.38 6.47 8.58 5.66 3.38 6.08 8.58 18.21(4)

R3 R4 R5

min ave max CPU s min ave max CPU s min ave max CPU s

15-10-3 19.18 22.73 36.93 4.72 8.58 8.80 9.68 21.49 6.84 7.57 7.75 4.63

15-10-5 16.23 16.40 16.44 1.70 6.76 6.93 6.98 5.74 4.98 5.27 5.34 1.52

15-10-7 2.19 6.25 16.23 1.77 0.21 2.22 6.76 6.15 0.00 1.30 4.98 1.61

15-20-8 37.92 44.19 55.47 5.82 16.26 22.98 31.28 22.50 13.78 19.89 27.19 5.33

15-20-10 21.76 27.25 34.34 6.12 10.18 13.83 18.87 27.75 8.50 12.21 16.74 5.85

15-20-12 10.49 14.87 19.18 5.90 3.38 6.47 8.58 26.41 2.84 5.67 7.75 5.48

R6 R7 R8

min ave max CPU s min ave max CPU s min ave max CPU s

15-10-3 6.84 7.57 7.75 23.22 7.75 8.42 8.58 6.19 6.14 7.43 7.75 26.01

15-10-5 4.98 5.27 5.34 3.88 4.71 4.96 5.02 1.98 4.52 4.59 4.60 6.54

15-10-7 0.00 1.30 4.98 3.58 0.00 1.30 4.71 1.66 0.00 1.09 4.52 6.67

15-20-8 13.78 19.89 27.19 20.67 15.26 20.04 26.40 6.82 13.29 18.87 25.68 25.75

15-20-10 8.50 12.20 16.74 25.08 8.53 12.25 16.58 6.99 8.24 11.69 15.90 27.50

15-20-12 2.84 5.66 7.75 24.84 2.67 5.87 8.58 6.25 2.22 5.21 7.29 26.88

lation instead of (R7) in these computations would result in an even larger tree.
Therefore, we do not report the time it takes to solve the hyperbolic program to
optimality using Li’s reformulation. The results of Tables 7–10 clearly demonstrate
the importance of node tightening in obtaining tighter bounds for the problems and
hence faster convergence.

8.3. p-CHOICE FACILITY LOCATION

We describe, as an application of (CCH), the p-choice facility location problem.
In facility location, the attractiveness of a particular site is often measured in terms
of the market share associated with it. In p-choice location models [11, 12], the
market share of a location is measured in terms of the ratio of the utility of that
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Table 6. Comparison of various bounds (m = 20)

Problem Li [24] R1 R2

m-n-p min ave max CPU s min ave max CPU s min ave max CPU s

20-10-3 79.81 85.89 91.19 0.97 0.30 7.37 13.47 2.08 0.25 7.33 13.40 4.77

20-10-5 92.94 125.77 203.86 0.91 7.56 8.59 9.51 2.56 7.56 8.58 9.50 6.77

20-10-7 95.48 140.33 223.93 1.07 1.82 2.15 2.81 2.27 1.76 2.11 2.73 4.20

20-20-8 135.65 204.11 320.16 2.67 14.67 23.19 27.86 10.36 14.67 19.94 25.21 58.74(2)

20-20-10 142.09 206.42 327.37 2.57 10.57 16.21 20.63 11.98 10.57 10.57 10.57 48.86(1)

20-20-12 147.12 207.51 331.69 2.96 6.14 8.51 9.90 10.86 9.49 9.49 9.49 32.72(1)

R3 R4 R5

min ave max CPU s min ave max CPU s min ave max CPU s

20-10-3 19.13 27.52 36.75 2.30 0.30 7.26 12.97 8.01 0.00 5.58 12.14 2.46

20-10-5 16.06 17.18 19.72 2.68 7.56 8.50 9.50 10.17 5.70 6.73 7.67 2.63

20-10-7 4.15 4.95 5.79 2.55 1.71 2.07 2.74 10.24 0.97 1.41 1.86 2.48

20-20-8 35.80 46.34 51.98 10.00 14.67 23.17 27.86 44.06 12.20 19.82 24.88 9.03

20-20-10 23.46 29.41 32.97 9.80 10.57 16.21 20.63 47.78 9.03 14.07 18.45 10.22

20-20-12 13.66 16.70 18.45 10.15 6.14 8.51 9.90 48.96 5.14 7.47 8.84 11.11

R6 R7 R8

min ave max CPU s min ave max CPU s min ave max CPU s

20-10-3 0.00 5.57 12.08 6.05 0.00 5.80 11.50 2.72 0.00 4.72 10.20 9.97

20-10-5 5.70 6.73 7.67 8.29 4.65 6.51 7.69 2.94 4.12 5.82 6.63 11.75

20-10-7 0.96 1.41 1.86 6.27 1.08 1.41 1.93 2.52 0.62 1.04 1.43 12.72

20-20-8 12.20 19.82 24.88 34.19 12.17 20.32 25.17 11.73 11.36 19.09 23.58 50.56

20-20-10 9.03 14.07 18.45 42.85 8.86 14.31 18.44 12.40 8.34 13.85 18.21 54.64

20-20-12 — — — — 5.05 7.65 9.27 12.81 4.71 7.06 8.55 54.15

location to the sum of the utilities of all available locations to the consumers.
Consider the problem of locating p facilities in n possible locations to service m

customer locations with the objective of maximizing market share. Let Uij denote
the utility of location j to the customers at i, di be the demand at customer location
i and wj be a preferential weight for a particular location j . Then, the problem of
determining the set of facility locations S to maximize the weighted market share
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Table 7. Computational results for CCH (m = 5)

Problem CPLEX 6.0 BARON

m-n-p No. Ntot Nopt Nmem CPU s Ntot Nopt Nmem CPU s

5-10-3 1 1 1 1 0.12 1 1 1 0.20

5-10-3 2 16 7 13 0.28 7 1 3 0.70

5-10-3 3 18 5 17 0.23 3 1 2 0.40

5-10-3 4 12 8 11 0.20 3 1 2 0.50

5-10-3 5 1 1 1 0.14 1 1 1 0.20

5-10-5 1 1 1 1 0.16 1 1 1 0.20

5-10-5 2 10 6 5 0.23 5 1 2 0.60

5-10-5 3 8 6 7 0.20 5 1 2 0.50

5-10-5 4 17 9 17 0.23 7 1 3 0.60

5-10-5 5 1 1 1 0.16 1 1 1 0.20

5-10-7 1 3 3 3 0.17 1 1 1 0.30

5-10-7 2 9 7 9 0.22 5 1 2 0.50

5-10-7 3 7 3 2 0.20 3 2 2 0.50

5-10-7 4 5 5 5 0.14 1 1 1 0.30

5-10-7 5 9 6 8 0.22 3 1 2 0.50

can be formulated as follows [21]:

(P ) max
∑
j∈S

wj

m∑
i=1

Uij∑
k∈S

Uik

di

s.t. |S| = p

S ⊆ {1, 2, . . . , n}
Introducing binary variables xj equal to 1 if location j is chosen and 0 otherwise,
the formulation becomes:

(P ) max
m∑
i=1

n∑
j=1

Uijwjdixj

n∑
j=1

Uijxj

s.t.
n∑

j=1

xj = p

xj ∈ {0, 1} j = 1, 2, . . . , n
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Table 8. Computational results for CCH (m = 5)

Problem CPLEX 6.0 BARON

m-n-p No. Ntot Nopt Nmem CPU s Ntot Nopt Nmem CPU s

5-20-8 1 127 83 125 2.89 15 1 5 2.40

5-20-8 2 24 20 22 0.66 5 4 2 1.10

5-20-8 3 29 22 25 1.05 5 1 2 1.20

5-20-8 4 15 12 13 0.53 3 2 2 1.00

5-20-8 5 73 34 60 1.43 21 1 4 2.90

5-20-10 1 103 73 83 2.91 21 1 6 3.10

5-20-10 2 29 17 28 0.77 3 1 2 1.10

5-20-10 3 58 45 46 1.40 15 12 4 2.60

5-20-10 4 23 12 22 0.67 5 4 2 1.20

5-20-10 5 41 36 41 1.13 7 1 2 1.50

5-20-12 1 42 37 40 1.21 9 1 2 1.60

5-20-12 2 17 11 15 0.75 5 4 2 1.00

5-20-12 3 36 29 36 1.18 7 6 3 1.50

5-20-12 4 17 13 17 0.79 5 1 2 1.20

5-20-12 5 40 19 39 1.07 11 1 4 1.90

5-50-23 1 45949 30293 30595 2185 574 145 108 222

5-50-23 2 702881 187494 344341 28247 7715 10 1401 2988

5-50-23 3 40042 32275 37739 2536 667 10 130 241

5-50-23 4 — — — — 6938 5164 1457 2488

5-50-23 5 615930 179449 179471 31977 2790 622 448 940

5-50-25 1 69187 33848 54399 3020 975 10 169 374

5-50-25 2 506225 125633 184451 19372 6959 6728 1230 2534

5-50-25 3 32846 24686 32001 1905 877 19 150 329

5-50-25 4 — — — — 4349 28 714 1609

5-50-25 5 — — — — 5261 1788 946 1943

5-50-27 1 36609 18897 36609 1622 641 19 112 233.10

5-50-27 2 203792 44385 192151 7328 4813 37 816 1702

5-50-27 3 23602 15465 20149 1343 637 1 115 251

5-50-27 4 — — — — 5079 3420 893 1803

5-50-27 5 — — — — 11811 19 1909 3704
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Table 9. Computational results for CCH (m = 10)

Problem CPLEX 6.0 BARON

m-n-p No. Ntot Nopt Nmem CPU s Ntot Nopt Nmem CPU s

10-10-3 1 9 6 8 0.55 5 1 2 1.20

10-10-3 2 1 1 1 0.34 1 1 1 0.50

10-10-3 3 19 10 18 0.94 7 1 2 1.60

10-10-3 4 15 8 15 0.88 7 1 3 1.50

10-10-3 5 2 2 2 0.37 1 1 1 0.60

10-10-5 1 8 5 6 0.60 5 1 2 1.40

10-10-5 2 16 12 15 0.95 3 1 2 0.80

10-10-5 3 35 21 35 1.42 7 1 2 1.50

10-10-5 4 11 7 10 0.72 5 1 2 1.30

10-10-5 5 9 7 8 0.62 3 1 2 0.90

10-10-7 1 24 18 21 0.73 7 1 3 1.40

10-10-7 2 9 7 8 0.58 1 1 1 0.60

10-10-7 3 14 5 4 0.57 3 1 2 1.10

10-10-7 4 6 5 6 0.38 1 1 1 0.70

10-10-7 5 8 6 7 0.57 5 1 2 1.20

10-20-8 1 1521 534 1518 104.91 234 231 54 70.50

10-20-8 2 616 310 597 58.28 85 54 17 31.30

10-20-8 3 60 44 55 7.38 13 1 4 5.90

10-20-8 4 663 389 636 54.06 99 1 19 35.00

10-20-8 5 145 133 144 14.66 17 1 4 6.90

10-20-10 1 1804 558 735 121.68 247 1 49 75.80

10-20-10 2 185 83 84 16.51 39 1 11 14.80

10-20-10 3 87 74 86 10.04 13 1 4 5.50

10-20-10 4 452 219 451 39.09 61 1 13 24.30

10-20-10 5 216 168 204 20.99 21 14 6 8.90

10-20-12 1 611 200 611 45.29 79 24 15 31.30

10-20-12 2 59 34 35 6.82 17 1 6 7.00

10-20-12 3 79 45 79 6.86 19 1 4 7.10

10-20-12 4 104 65 101 10.67 27 1 6 10.80

10-20-12 5 96 42 95 7.42 31 31 7 11.20
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Table 10. Computational results for CCH (m = 20)

Problem CPLEX 6.0 BARON

m-n-p No. Ntot Nopt Nmem CPU s Ntot Nopt Nmem CPU s

20-20-8 2 2373 770 1057 536 267 228 55 246

20-20-8 3 2430 783 739 524 229 1 50 242

20-20-8 4 598 160 150 167 103 32 26 98

20-20-8 5 1072 441 1004 304 117 116 28 120

20-20-10 1 3080 1177 1575 782 299 248 60 297

20-20-10 2 1668 813 1658 489 177 76 36 170

20-20-10 3 6988 2332 3431 1415 565 1 111 533

20-20-10 4 670 201 181 176 93 1 22 85

20-20-10 5 1293 671 1192 400 125 1 31 128

20-20-12 1 1456 476 508 383 189 1 35 197

20-20-12 2 518 266 285 164 99 94 16 95

20-20-12 3 2381 780 2326 552 251 30 46 246

20-20-12 4 349 151 330 113 45 34 10 49

20-20-12 5 666 277 632 207 85 1 18 83

20-30-12 1 178111 67041 86196 55702 3689 1 715 5548

20-30-12 2 56521 19253 33484 20289 1241 1 229 2073

20-30-12 3 68910 20357 13104 24720 1727 1 357 2344

20-30-12 4 248326 75427 117556 76551 4643 1 905 7593

20-30-12 5 41233 13527 41233 14523 1302 995 280 2178

20-30-14 1 173519 59322 91570 56777 3841 3252 765 5510

20-30-14 2 59084 21858 57927 23099 1636 1613 317 2361

20-30-14 3 47991 20725 47076 22763 1135 1 216 1811

20-30-14 4 141853 62496 72827 53159 2489 2278 473 4127

20-30-14 5 92518 36266 44205 33678 2351 1 455 3476

20-30-16 1 104255 44747 99248 41081 3187 271 611 4547

20-30-16 2 27097 8781 10772 11057 1033 1 193 1493

20-30-16 3 22456 9307 18964 10175 585 520 102 1087

20-30-16 4 55943 22708 29132 22709 1501 1 265 2521

20-30-16 5 38832 16381 36904 17047 1353 1 256 1912
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The proposed algorithm was applied to the problem of locating a set of 10 res-
taurant franchises in the city of Edmonton, Canada, using the formulation (P). The
city of Edmonton is divided into 886 enumeration areas (EA), or zones for Federal
Census purposes. Using geographic information system (GIS) data, the centroids
of each of these zones and their inter-spatial distances were calculated. 100 of the
most populated EA centroids were chosen as demand points and 58 of these as
candidate locations for restaurants. The criterion for choosing these sites was the
existence of at least three other restaurants at the location. For each of the demand
points, the total expenditure on existing restaurants was assumed to represent the
demand for that location. The utility of a prospective location to a customer at a par-
ticular demand point was estimated using a multiplicative competition interaction
criteria [29] as a function of distance, accessibility, and a number of attractiveness
factors. The preferential weight of a location was estimated using the index of
retail saturation [11] which is a function of population and per capita expenditure.
Detailed description of the data for this problem is presented in [21].

Using the above data, the resulting p-choice model consists of a sum of 100
fractional terms, 58 binary variables and a cardinality requirement of 10. Using
reformulation (R7) the resulting MIP has 5900 continuous variables, 58 binary
variables, and 23501 constraints. The problem was solved to global optimality
using the proposed algorithm on a single processor of an IBM RS/6000 SP2 with
512MB RAM in 5.5 hours. Ninety-seven percent of the CPU time was consumed
by CPLEX 6.0 in solving the linear programming relaxations. In particular, 10% of
the total CPU time was spent in solving the LP relaxation at the root node. Global
optimality was proven in a total of 79 nodes with at most nine nodes stored in
memory. The optimal solution was located at the tenth node.
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